当前位置:首页 > 新闻中心 > Printable, flexible battery offers 10 times the density of lithium

Printable, flexible battery offers 10 times the density of lithium

2024-09-22 20:30:52 [关于我们] 来源:CCTV News Channel live broadcast

Scientists investigating an experimental battery chemistry have wound up with a flexible device they say offers up to 10 times the energy density of current lithium-ion solutions, making it an ideal fit for a number of applications. The technique also allows for easier manufacturing of flexible batteries, with the researchers claiming the resulting device can be tailored to fit with electronics devices, rather than the other way around.

The work was carried out by scientists at the University of California (UC) San Diego, and focuses on a type of battery chemistry known as silver-oxide zinc. This has long been fancied as a promising alternative to lithium-ion designs, due to its greater energy density and safety, but a few roadblocks stand in the way of widespread adoption, namely an instability that leads to a limited cycle life.

The UC San Diego team addressed this by incorporating a new cathode material from Californian company ZPower, a long-time purveyor of batteries incorporating silver and zinc. This cathode uses a lead oxide coating to improve the battery’s electrochemical stability and conductivity, along with reducing its impedance, which is the battery’s resistance to an alternative current.

Armed with this new cathode, the researchers set out to do something that hadn’t been done before, which is screen print a silver oxide-zinc battery. While this chemistry is favored for most commercial flexible batteries, they need to be pieced together under sterile conditions in a vacuum to counter chemical instability and high oxidation.

Through experimentation, the team came up with an ink formulation they say now makes printing these batteries possible. Layer-by-layer, the battery’s current collectors, zinc anode, new cathode and separators are screen-printed onto a chemically stable polymer film, which has a high melting point of around 200 °C (392 °F).

The result of this is a flexible, stretchable battery with an areal capacity of 50 milliamps per square centimeter, which the team says is 10 to 20 times greater than that of a typical lithium-ion battery. All up, the team says the device can provide five to 10 times more power than a typical lithium-ion battery of the same size.

(责任编辑:关于我们)

推荐文章
热点阅读